Stochastic Charging Coordination Method for Electric Vehicle (EV) Aggregator Considering Uncertainty in EV Departures

نویسندگان

  • Youngwook Kim
  • Sung-Kwan Joo
چکیده

This paper presents a stochastic method for an electric vehicle (EV) aggregator to coordinate EV charging schedule considering uncertainty in EV departures. The EV aggregator is responsible for managing the charging schedule of EVs while participating in the electricity markets. The managed EV charging can provide additional revenues to the aggregator from regulation market participation and charging cost reductions to EV owners. The aggregator needs to coordinate the charging schedule considering various uncertain factors such as electricity market prices and the stochastic characteristics of EVs. In this paper, the EV charging scheduling problem incorporating uncertainty in EV departures is formulated as a stochastic optimization problem. A stochastic optimization method is used to solve the EV charging scheduling problem. Latin hypercube sampling (LHS) and a scenario-reduction method are also applied to reduce the computational efforts of the proposed method. The results of a numerical example are presented to show the effectiveness of the proposed stochastic EV charging coordination method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Coordination of Charging and Frequency Regulation for an Electric Vehicle Aggregator Using Least Square Monte-Carlo (LSMC) with Modeling of Electricity Price Uncertainty

Recently, many studies have suggested that an electric vehicle (EV) is one of the means for increasing the reliability of power systems in new energy environments. EVs can make a contribution to improving reliability by providing frequency regulation in power systems in which the Vehicle-to-Grid (V2G) technology has been implemented and, if economically viable, can be helpful in increasing powe...

متن کامل

Stochastic Multiperiod Decision Making Framework of an Electricity Retailer Considering Aggregated Optimal Charging and Discharging of Electric Vehicles

This paper proposes a novel decision making framework for an electricity retailer to procure its electric demand in a bilateral-pool market in presence of charging and discharging of electric vehicles (EVs). The operational framework is a two-stage programming model in which at the first stage, the retailer and EV aggregator do their medium-term planning. Determination of retailer's optimum sel...

متن کامل

Optimal Decision Making Framework of an Electric Vehicle Aggregator in Future and Pool markets

Electric vehicle (EV) aggregator, as an agent between the electricity market and EV owners, participates in the future and pool market to supply EVs’ requirement. Because of the uncertain nature of pool prices and EVs’ behaviour, this paper proposed a two-stage scenario-based model to obtain optimal decision making of an EV aggregator. To deal with mentioned uncertainties, the aggregator’s risk...

متن کامل

A multi-agent based scheduling algorithm for adaptive electric vehicles charging

This paper presents a decentralized scheduling algorithm for electric vehicles charging. The charging control model follows the architecture of a Multi-Agent System (MAS). The MAS consists of an Electric Vehicle (EV)/Distributed Generation (DG) aggregator agent and ‘‘Responsive” or ‘‘Unresponsive” EV agents. The EV/DG aggregator agent is responsible to maximize the aggregator’s profit by design...

متن کامل

Scheduling of Electric Vehicle Charging Station for profit maximization of Vehicles and Station in Uncertainty

Abstract: In this paper, the electric vehicle (EV) charging station scheduling process is designed to maximize the profit of EVs owners and the station operator in two steps. First, a complete model is proposed to formulate the problem of charging and discharging EVs at charging stations in one-day-ahead 24-hours. The purpose of the program is to increase the profits of EVs owners charging stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016